98
Views
2
CrossRef citations to date
0
Altmetric
Plant endomembranes

Localization of plant N‐glycan processing enzymes along the secretory pathway

Pages 636-642 | Published online: 07 Dec 2009
 

Abstract

N‐glycosylation is an abundant covalent protein modification in all eukaryotic cells. The biosynthesis and processing of protein N‐linked glycans results from a series of highly co‐ordinated step‐by‐step enzymatic conversions occurring mainly in the endoplasmic reticulum (ER) and Golgi apparatus. N‐glycan processing enzymes are thought to act on cargo glycoproteins in a highly ordered fashion in an assembly line. Thus, the subcellular localization of these enzymes together with their in vivo substrate specificity determines the carbohydrate structures of glycoproteins transported through the secretory pathway. While the substrate specificities of many plant N‐glycan processing enzymes are fairly well characterized, the molecular mechanisms underlying enzyme localization to the ER and Golgi have remained largely elusive so far. This review discusses current data on ER and Golgi localization of plant N‐glycan processing enzymes.

Acknowledgements

Work in my group is supported by grants from the Austrian Science Fund (P19092 and P19494). I thank Herta Steinkellner for comments and discussions and Jennifer Schoberer (all from BOKU) for preparation of Figure .

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.