66
Views
2
CrossRef citations to date
0
Altmetric
Growth and Development

Photomorphogenic responses to UV radiation IV: a comparative study of UVB effects on growth and pigment accumulation in etiolated and de-etiolated hypocotyls of wild-type and aurea mutant of tomato Lycopersicon esculentum Mill)

&
Pages 83-92 | Received 19 May 1997, Accepted 30 Sep 1997, Published online: 18 Mar 2013
 

ABSTRACT

The question of how de-etiolation of tomato seedling under continuous monochromatic yellow light exerts an influence on UV radiation-induced responses has been studied. Hypocotyl extension and the accumulation of anthocyanins and UV-absorbing compounds was compared in the aurea mutant of tomato and its isogenic wild type. The data of the present paper provide evidence that, during de-etiolation of tomato seedlings, yellow light exerts its effects over seedlings responsiveness to subsequent UV irradiation through several mechanisms: 1) a significant enhancement of shorter UVB wavelength efficiency in both the genotypes; 2) the abolition of UVA -blue light-induced accumulation of UV-absorbing compounds that does not involve pnyA; 3) the disappearance of UVA-blue light-induced hypocotyl growth inhibition that does not involve phyA; 4) higher anthocyanin accumulation rate in response to UV radiation mediated by phyA. Yellow light-induced growth inhibition and accumulation of UV-absorbing compound both mediated by phyA and present only in wild type tomato, appear to be completely separate from the action of UV radiation on the same responses.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.