663
Views
20
CrossRef citations to date
0
Altmetric
Original Articles

Influence of salt stress on growth, lipid peroxidation and antioxidative enzyme activity in borage (Borago officinalis L.)

, , , , , & show all
Pages 362-369 | Published online: 25 May 2011
 

Abstract

The effects of increasing salt concentrations on the growth, electrolyte leakage, lipid peroxidation, and major antioxidant enzyme activities (superoxide dismutase, catalase, ascorbate peroxidase and glutathione reductase) of borage plants were investigated. Plants were grown in half strength of Hoagland nutrient solution added with 0, 25, 50, and 75 mM of NaCl. Most measured parameters were affected by salinity. Increasing salt levels caused a significant reduction in leaf area, stem length, stem diameter, flower number, and dry masses of different organs. Growth of borage plants, in terms of dry weight, was affected. As a consequence of salinity stress, lipid peroxidation and membrane permeability was increased. Antioxidant activity showed an increase in the activity of superoxide dismutase, a non-induced activity of catalase and ascorbate peroxidase, and a slight increase in glutathione reductase activity. The results indicate that borage plants appear to be sensitive to salt stress, since enzymes related to antioxidant enzymatic defense system in treated leaves should be highly active.

Acknowledgements

We thank Mr. Garth Cordner for reviewing the English text.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.