374
Views
18
CrossRef citations to date
0
Altmetric
Original Article

Seed germination and phytochemical evaluation in seedlings of Aloe arborescens Mill.

, , &
 

Abstract

Many Aloe species are exploited as natural products. Generally, the leaves are unsustainably picked from wild plants to meet the market demand. Basic scientific information on seed biology and the ways of increasing levels of secondary metabolites in seedlings is still lacking for Aloe species. This study investigated seed germination requirements and evaluated levels of secondary metabolites in seedlings of Aloe arborescens, an important species in traditional medicine. The highest percentage germination (78%) and the fastest germination rate (GR) (10% d− 1) with a mean germination time (MGT) of 9 days were achieved at 20°C under a 16-h photoperiod. At 25°C, maximum percentage germination (67%) (P < 0.05), higher GR (13% d− 1) and shorter MGT (6 days) were obtained under constant light. These results indicate that temperature and light play a significant role in germination of A. arborescens seeds. Increasing osmotic pressure on seeds decreased percentage germination, whereas buffering the solution to a range of pH values (4–10) did not significantly affect germination. Smoke–water (1:500 v/v), smoke-isolated karrikinolide (10− 8 and 10− 9 M) and potassium nitrate (10− 3 and 10− 4 M) significantly promoted germination compared with the control at 25°C (supra-optimal temperature) under a 16-h photoperiod. These treatments were also effective in increasing secondary metabolite levels (flavonoids and phenolics) in A. arborescens seedlings.

Acknowledgements

The authors would like to thank the University of KwaZulu-Natal, National Research Foundation, Pretoria South African/China Co-operative Programme and Claude Leon Foundation, Cape Town, South Africa, for their financial support.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.