200
Views
1
CrossRef citations to date
0
Altmetric
Recent Study on Plant-Soil Interactions in China - Part I

Response of soil respiration to temperature and soil moisture: Effects of different vegetation types on a small scale in the eastern Loess Plateau of China

, , , , &
Pages 1191-1200 | Published online: 19 Nov 2013
 

Abstract

Soil respiration is affected by vegetation and environmental conditions. The purpose of this study was to investigate the effect of vegetation type on soil respiration, temperature and water content, and their correlations on a small scale. We measured soil respiration rate (Rs) over a 3-year period at biweekly intervals in three plots in the eastern Loess Plateau of China, with the same soil texture but different vegetation types: pine forest, grassland, and shrub land. Simultaneously, soil temperature (Ts) at 10 cm depth and soil water content (Ws) within 10 cm depth were measured. The seasonal course of Rs and Ts showed a similar temporal variation in the three plots, with higher values in summer and autumn and lower values in winter and spring. No significant differences (P>0.05) were found between plots, except for Ws. The mean cumulative release of CO2 efflux from March to December was 962.5, 1027.5, and 1166.5 g C m− 2 a− 1 for plots 1, 2, and 3, respectively, with no significant difference between plots. The fitted exponential equations of Rs versus Ts from the 3-year data-set were significant (P < 0.05) with an R2 of 0.72, 0.64, and 0.72 for plots 1, 2, and 3, respectively. The calculated Q10 from the parameters of the fitted equation was 3.57, 3.52, and 3.61, and the R10 was 2.36, 2.03, and 2.37 μmol CO2 m− 2 s− 1 for plots 1, 2, and 3, respectively. Compared with the Ts, the correlations between Rs and Ws were not significant for the three plots. However, if the Ts was above 10°C, then their correlation was significant, and Ws had an impact on Rs. Four combined regression equations including two variables of Ts and Ws could be well established to model correlations between Rs and both Ts and Ws. Our study demonstrated that the exponential and power model fitted best and no significant different correlations of combined equations existed between the three plots. These results show that vegetation type had little impact on Rs, Ts, Ws, and their correlations, as well as on related parameters such as Q10 and R10. Therefore, while doing Rs research in a horizontal patchy vegetation conditions on a small area, the sampling location of measurements should focus on vertical dominant vegetation and ignore patch vegetation so as to reduce field work load.

Acknowledgements

The authors thank Lu Guo, Yihui Zhang, Ju Liu, and Yanmei Rong for their valuable help in fieldwork.

Additional information

Funding

This study was funded by the National Natural Science Foundation of China [grant numbers 41201374, 41130528], the Natural Science Foundation of Shanxi [grant number 2012011033-5] and the Shanxi Scholarship Council of China.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.