198
Views
0
CrossRef citations to date
0
Altmetric
Article

Comparative transcriptomics and metabolomics in Vitis vinifera ‘Malvasia’ and Vitis rupestris ‘Du Lot’ cultured cells provide insights in possible innate resistance against pathogens

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 557-566 | Received 22 Sep 2020, Accepted 22 Dec 2020, Published online: 29 Jan 2021
 

Abstract

Grapevine varieties showing putative resistance to pathogens are a promising alternative to reduce the impact of disease management. Despite research efforts in understanding pathogen susceptibility/resistance to pathogens, the mechanisms that regulate these processes remain unclear. To identify the molecular and metabolic mechanisms associated with putative different susceptibility to pathogens and/or constitutive resistance, comparative transcriptomics and metabolomics were carried out in cultured cells of V. vinifera ‘Malvasia’ and V. rupestris ‘Du Lot’. Transcriptomic analysis revealed a higher enrichment of genes involved in biosynthesis of cell wall proteins, PR protein, ROS activation, phenylpropanoid pathway, TIR-NBS-LRR proteins and WRKY transcription factors in V. rupestris compared to V. vinifera. 1H-NMR based metabolomic analysis highlighted that leucine, isoleucine, valine, threonine, alanine, γ-aminobutyric acid (GABA), glutamine, phenylalanine and pyruvate significantly increased in V. rupestris compared to V. vinifera. Conversely, glucose, sucrose, and fumarate significantly decreased in V. rupestris compared to V. vinifera. Our findings reveal distinct pre-constitutive defense systems in two species consisting in an up-regulation of genes and primary metabolites involved in plant defense responses. These responses could be constitutively activated in V. rupestris opening new insights for sustainable viticulture through improved breeding programs.

Acknowledgment

We would like to acknowledge Sequentia Biotech, Barcelona (Spain) for transcriptomic analysis.

Disclosure statement

No potential conflict of interest was reported by the authors.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.