Publication Cover
Acta Botanica Gallica
Botany Letters
Volume 153, 2006 - Issue 3
671
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

NaCl effects growth, ions and water status of Tomato (Lycopersicon esculentum) seedlings

, &
Pages 297-307 | Received 02 Nov 2005, Accepted 01 Dec 2005, Published online: 26 Apr 2013

Abstract

Tomato seedlings (Lycopersicon esculentum Mill, cv Chibli F1) were subjected to different NaCl treatments (0, 25, 50 and 100 mM) during 10 days. Under low salinity (25 mM NaCl), tomato preserved a normal growth activity, associated with maintain of the tissues water status and a high selectivity for K+ over Na+. Under high salinity (50 and 100 mM), endogenous Na+ and CI accumulations were contradicted by a decrease of K+ and NO3 contents. Our results support the existence of a competition between K+/Na+ and NO3 CI at the level of uptake and storage process. The high salt stress (50 and 100 mM) emphasized a typical glycophytic behavior; displaying i) a severe decline in plant growth activity, ii) the low Na+ amounts compared to CI in the leaves, make an evidence for Na+ extrusion from the leaves to the stems-petioles and roots, and iii) an inaptitude to use Na+ instead of K+ to carry out osmotic adjustments at high salinity (100 mM NaCl).

Résumé

De jeunes plants de Tomate (Lycopersicon esculentum Mill, cv Chibli F1) ont été soumis à différentes doses de NaCl (0, 25, 50 et 100 mM) pendant 10 jours. À faible dose de sel (25 mM), les plantes gardent une activité de croissance normale, associée au maintien de l'hydratation de leurs tissus ainsi qu'une forte sélectivité ionique en faveur des ions K+. À forte dose de NaCl (50 et 100 mM), l'accumulation des ions Na+ et Cl est associée à une baisse des teneurs en nutriments, notamment en K+ et en NO3 . Nos résultats suggèrent l'existence d'une compétition ionique entre Na+/K+ et Cl/NO3 . Les plantes manifestent un comportement glycophytique typique: i) chute de l'activité de croissance, avec une grande sensibilité de la partie aérienne, ii) exclusion des ions Na+ vers les tiges-pétioles et racines et iii) inaptitude de substituer K+ par Na+ pour rétablir l'équilibre osmotique au niveau des feuilles.

Abréviations

Cl =

chloride

NO3 =

nitrate

Na+ =

sodium

PO4 2- =

phosphorus

S=

selectivity

SO4 2- =

sulfates

REFERENCES

  • Abdel-Baki , G. K. , Siefritz , F. , Man , H. M. , Weiner , H. , Haidenhoff , R. and Kaiser , W. M. 2000 . Nitrate reductase in Zea mays L under salinity. . Plant Cell Envir. , 23 : 515 – 521 .
  • Amtmann , A. and Sanders , A. 1999 . Mechanisms of Na+ uptake by plant cells. . Adv. Bot. Research , 29 : 75 – 112 .
  • Cakirlar , H. and Bowling , D. J.F. 1981 . The effect of the salinity on the membrane potential of sunflower roots. . J. Exp. Bot. , 32 : 479 – 487 .
  • Drew , M. C. and Lächli , A. 1987 . The role of mesocotyl in sodium exclusion from the shoot of Zea mays L. (cv.Pioneer 3906). . J. Exp. Bot. , 38 : 409 – 418 .
  • Fleury and Ledere . 1943 . La méthode nitro-vanadomolybdique de mission pour le dosage colorimétrique du phosphore. Son intérêt en biochimie. . Bull. Chimie et Biologie , 2 : 201 – 205 .
  • Flores , H. E. and Galston , A. W. 1984 . Osmotic stress-induced polyamine accumulation in cereal leaves. II—Relation to amino acid pools. . Plant Physiol. , 75 : 110 – 113 .
  • Flowers , T. J. and Yeo , A. R. 1995 . Breeding for salinity resistance in crop plants. Where next? . Austr. J. Plant Physiol. , 22 : 875 – 884 .
  • Garg , A. K. , Kim , J. K. , Owens , T. G. , Ranwala , A. P. , Choi , Y. D. , Kochian , L. V. and Wu , R. J. 2002 . Trehalose accumulation in rice plants confers high tolerance levels to different abiotic stresses. . Proc. Nat. Acad. Sci. USA , 99 : 15898 – 15903 .
  • Gaxiola , R. A. , Li , J. , Undurraga , S. , Dang , V. , Allen , G. J. , Alper , S. L. and Fink , G. R. 2001 . Drought and salt-tolerant plants result from overexpression of the AVP1 H+-pump. . Proc. Nat. Acad. Sci. USA , 98 : 11444 – 11449 .
  • Gorham , J. , Bridges , J. , Dubcovsky , J. , Dvorak , J. , Hollington , P. A. , Luo , M. C. and Khan , J. A. 1997 . Genetic analysis and physiology of a trait for enhanced K+/Na+ discrimination in wheat. . New Phytol. , 137 : 109 – 116 .
  • Gouia , H. , Ghorbel , M. H. and Touraine , B. 1994 . Effects of NaCl on flows of N and mineral Ions and NO3 − reduction rate within whole plants of salt-sensitive Bean and salt-tolerant Cotton. . Plant Physiol. , 105 : 1409 – 1418 .
  • Greenway , H. and Munns , R. 1980 . Mechanisms of salt tolerance in nonhalophytes. . Ann. Review Plant Physiol. , 31 : 149 – 190 .
  • Hunt , R. 1990 . Basic growth analysis. Plant growth analysis for beginners. Academic Press, London 112
  • Laurie , S. , Feeney , K. A. , Maathuis , F. J.M. , Heard , P. J. , Brown , S. J. and Leigh , R. A. 2002 . A role for HKT1 in sodium uptake by wheat roots. . Plant J. , 32 : 139 – 149 .
  • Liu , W. , Fairbairn , D. J. , Reid , R. J. and Schachtman , D. P. 2001 . Characterization of two HKT1 homologues from Eucalyptus camaldulensis that display intrinsic osmosensing capability. . Plant Physiol. , 127 : 283 – 294 .
  • Liu , J. and Zhu , J. K. 1998 . A calcium sensor homology required for plant salt tolerance. . Science , 280 : 1943 – 1945 .
  • Maathuis , F. J.M. and Amtmann , A. 1999 . K+ nutrition and Na+ toxicity: the basis of cellular K+/Na+ ratios. . Ann. Bot. , 84 : 123 – 133 .
  • Maria , L. B. , Hess , F. D. , Bressan , R. A. and Hasegawa , P. M. 1988 . Intracellular compartmentation of ions in salt adapted tobacco cells. . Plant Physiol. , 86 : 607 – 614 .
  • Munns , R. and Termaat , A. 1986 . Whole plant responses to salinity. . Austr. J. Plant Physiol. , 3 : 143 – 160 .
  • Niu , X. , Bressan , R. A. , Hasegawa , P. M. and Pardo , J. M. 1995 . Ion homeostasis in NaCl stress environments. . Plant Physiol. , 109 : 735 – 742 .
  • PeukeA , D. and Jeschke , W. D. 1999 . The characterization of inhibition of net nitrate uptake by salt in salt-tolerant barley (Hordeum vulgare L.cv. Califonia Mariout). . J. Exper. Bot. , 50 : 1365 – 1372 .
  • Pilbeam , D. J. and Kirkby , E. A. 1990 . “ The physiology of nitrate uptake. ” . In Nitrogen in Higher Plant. Edited by: Abrol , Y. P. 39 – 64 . New York : Research studies Press LTD .
  • Prat , D. and Fathi-Ettai , R. A. 1990 . Variation in organic and mineral components in young Eucalyptus seedlings under saline stress. . Physiol. Plantarum , 79 : 479 – 486 .
  • Richardson , S. G. and McCree , K. J. 1985 . Carbon balance and water relation of sorghum exposed to salt stress and water stress. . Plant Physiol. , 79 : 1015 – 1020 .
  • Rubio , F. , Gassmann , W. and Schroeder , J. I. 1995 . Sodium driven potassium uptake by the plant potassium transporter HKT1 and mutations conferring salt tolerance. . Science , 270 : 1660 – 1663 .
  • Rus , A. , Yokoi , S. , Sharkhuu , A. , Reddy , M. , Lee , B. H. , Matsumoto , T. K. , Koiwa , H. , Zhu , J. K. , Bressan , R. A. and Hasegawa , P. M. 2001 . AtHKT1 is a salt tolerance determinant that controls Na+ entry into plant roots. . Proc. Nat. Acad. Sci. USA , 98 : 14150 – 14155 .
  • Shabala , S. 2000 . Ionic and osmotic components of salt stress specifically modulate net ion fluxes from bean leaf mesophyl. . Plant Cell Envir. , 23 : 825 – 837 .
  • Shi , H. , Lee , B. H. , Wu , S. J. and Zhu , J. K. 2003 . Overexpression of a plasma membrane Na+/H+ antiporter improves salt tolerance in . Arabidopsis. Nature Biotechnology , 21 : 81 – 85 .
  • Shi , H. , Quintero , F. J. , Pardo , J. M. and Zhu , J. K. 2002 . Role of SOS1 as a plasma membrane Na+/H+ antiporter that controls long distance Na+ transport in plant. . Plant Cell , 14 : 465 – 477 .
  • Shi , H. and Zhu , J. K. 2002 . Regulation of expression of the vacuolar Na+/H+ antiporter gene AtNHX1 by salt stress and ABA. . Plant Mol. Biol. , 50 : 543 – 550 .
  • Soltani , A. 1988 . Analyse des effets du chlorure de sodium et de la source d'azote sur la nutrition minérale de l'orge. Thèse Doctorat d'État, Faculté des Sciences de Tunis 322
  • Tarakcioglu , C. and Inal , A. 2002 . Changes induced by salinity, demarcating specific ion ratio (Na+/CI−) and osmolarity in ion and proline accumulation, nitrate reductase activity, and growth performance of lettuce. . J. Plant Nutrition , 25 : 27 – 41 .
  • Thomas , B. and Kinraide , T. B. 1999 . Interactions among Ca2+, Na+ and K+ in salinity toxicity: quantitative resolution of multiple toxic and ameliorative effects. . J. Exper. Bot. , 50 : 1495 – 1505 .
  • Yeo , A. R. 1983 . Salinity resistance: physiologies and prices. . Physiol. Plantarum , 58 : 214 – 222 .
  • Zhang , H. X. , N Hodson , J. , P Williams , J. and Blumwald , E. 2001 . Engineering salt- tolerant Brassica plants: characterization of yield and seed oil quality in transgenic plants with increased vacuolar sodium accumulation. . Proc. Nat. Acad. Sci. USA , 98 : 12832 – 12836 .
  • Zhu , J. K. 2003 . “ Regulation of ion homeostasis under salt stress. ” . In Current Opinion of Plant Biology 441 – 445 .

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.