Publication Cover
Acta Botanica Gallica
Botany Letters
Volume 157, 2010 - Issue 1
516
Views
7
CrossRef citations to date
0
Altmetric
Original Articles

Cadmium stress effects on photosynthesis and PSII efficiency in tomato grown on NO3 or NH4+ as nitrogen source

, , &
Pages 101-115 | Received 07 Oct 2008, Accepted 03 Feb 2009, Published online: 26 Apr 2013

Abstract

This work investigates the combined effects of N form and Cd treatment on photosynthesis of tomato (Solanum lycopersicum Mill. cv Ibiza F1). Our study shows that, compared to plants fed with NO3“, dry weight, fresh weight and leaf area decrease when plants received NH4 + as N form. Regardless the N form used, Cd inhibits this parameters. In this report we show that, when grown in NH4 +, Cd—stressed seedlings accumulate higher levels of chlorophyll. Under Cd stress, water content, transpiration rate (E), stomatal conductance (Gs) and photosynthetic activity (Amax) decreased in plants fed with NO3 and increased in NH4 +- grown-plants. The Fv/Fm ratio of dark adapted leaves was lower in NH4+- grown tomato compared to in NO3“-grown seedlings. Upon exposure to metal, the Fv/Fm ratio and the fraction of open PSII reaction centers (qp) were depressed by Cd in NO3grown plants and enhanced in NH4 +-grown ones. NPQ stimulated by Cd in NO3 -grown plants was inhibits in NH4 +-grown ones.

Résumé

Ce travail examine les effets combinés de la forme d'azote et du traitement par le cadmium sur la photosynthèse de la tomate (Solanum lycopersicum Mill. cv Ibiza F1). Par comparaison aux plantes recevant NO3“, la matière sèche et fraîche ainsi que la surface foliaire diminuent chez les plantes cultivées en présence de NH4 +. Quelle que soit la forme d'azote utilisée, Cd inhibe ces paramètres. Les plantes stressées par Cd et cultivées en présence de NH4 + accumulent plus de chlorophylle. Sous stress cadmique, les teneurs en eau, la transpiration (E), la conductance stomatique (Gs) et l'activité photosynthétique (Amax) diminuent chez les plantes recevant NO3 et augmentent chez celles cultivées en présence de NH4 +. L'efficience maximale des feuilles adaptées à l'obscurité (Fv/Fm) est plus faible chez les plantes cultivées en milieu ammoniacal que chez celles cultivées en milieu nitrique. Suite à l'exposition au métal, Fv/Fm ainsi que la fraction de centres de réaction PSII ouverts (qp) diminuent chez les plantes recevant NO3 et augmentent chez celles recevant NH4 +. Par contre, la désaltération non photochimique (NPQ) est stimulée par Cd chez les plantes recevant NO3 et inhibé chez celles issues du milieu ammoniacal.

Abreviations

N=

nitrogen

Cd=

cadmium

Amax=

photosynthetic rate

E=

transpiration rate

Gw=

stomatal conductance

Ci=

intercellular CO2 concentration

Fv/Fm=

maximum quantum efficiency of PSII photochemistry

qp=

photochemical quenching

NPQ=

nonphotochemical quenching

ΦPSII =

PSII efficiency

Qexc=

efficiency of excitation energy capture by open PSII reaction centres

QA=

primary quinone electron acceptor of PSII

PSII=

photosystem II

REFERENCES

  • Arnon , D. J. 1949 . Copper enzymes in isolated chloroplasts. Polyphenoloxidase in . Beta vulgaris. Plant Physiol. , 24 : 1 – 14 .
  • Baker , N. R. and Rosenquist , E. 2004 . Application of chlorophyll fluorescence can improve crop production strategies: An examination of future possibilities. . J. Exp. Bot. , 55 : 1607 – 1621 .
  • Basra , A. S. and Goyal , S. S. 2002 . “ Mechanisms of improved nitrogen-use efficiency in cereals. 18. ” . In Quantitative Genetics, Genomics and Plant Breeding. Edited by: Kang , M. S. 269 – 288 . Baton rouge : CAB International, Louisiana State University .
  • Becerril , J. M. , Munoz-Rueda , A. , Aparicio-Tejo , P. and Gonzalez-Murua , C. 1988 . The effects of cadmium and lead on photosynthetic electron transport in clover and Lucerne. . Plant Physiol. Biochem. , 26 : 357 – 363 .
  • Björkman , O. and Demmig-Adams , B. 1994 . “ Regulation of photosynthetic light energy capture, conversion, and dissipation in leaves of higher plants. ” . In Ecophysiology of photosynthesis. Edited by: Schulze , E. D. and Caldwell , M. M. 17 – 47 . Berlin : Springer-Verlag .
  • Bloch , B. , Hofmann , C. M. and Märländer , B. 2006 . Impact of water supply on photosynthesis, water use and carbon isotope. Discrimination of sugar beat genotype. . Eur. J. Agr. , 24 : 218 – 225 .
  • Bloom , L. , Cellens , E. , Bousser , A. , Hoarou , J. and Prioul , J. L. 1996 . Xylem exudation is related to nitrate assimilation pathway in detopped xnaize seedlings: use of nitrate reductase and glutamine synthetase inhibitors as tools. . J. Exp. Bot. , 47 : 485 – 495 .
  • Britto , D. T. and Kronzucker , H. J. 2002 . NH4 + toxicity in higher plants: a critical review. . J. Plant Physiol. , 159 : 567 – 584 .
  • Chaffei , C. , Gouia , H. and Ghorbel , M. H. 2003 . Nitrogen metabolism of tomato under cadmium stress conditions. . J. Plant Nutr. , 26 : 1617 – 1634 .
  • Chaffei , C. , Masclaux-Daubresse , C. , Gouia , H. and Ghorbel , M. H. 2006 . “ Purification of glutamate dehydroge- nase isoenzymes from control and cadmium treated leaf. ” . In Cadmium Toxicity and Tolerance in Plants. Edited by: Nafees , Samiullah . 137 – 156 . New Delhi : Narosa Publishing House .
  • Chaignon , V. , Bedin , F. and Hinsinger , P. 2001 . Copper bioavailability and rhizosphere pH changes as affected by nitrogen supply for tomato and oilseed rape cropped on an acidic and a calcareous soil. . Plant Soil , 243 : 219 – 228 .
  • Chang , C. C. , Locy , R. D. , Smeda , R. , Sahi , S. V. and Singh , N. K. 1997 . Photoautotrophic tobacco cells adapted to grow at high salinity. . Plant Cell Rep. , 16 : 495 – 502 .
  • Chugh , L. K. and Sawhney , S. K. 1999 . Photosynthetic activities of Pisum sativum seedlings growth in presence of cadmium. . Plant Phys. Biochem. , 37 : 297 – 303 .
  • Claussen , W. and Lenz , F. 1999 . Effect of ammonium or nitrate on net photosynthesis, growth and activity of the enzymes nitrate reductase and glutamine synthtase in blueberry, raspberry and strawberry. . Plant Soil , 208 : 95 – 102 .
  • Cornic , G. and Fresneau , C. 2002 . Photosynthetic carbon reduction and carbon oxidation cycles ar the main electron sites for photosystem two activities during a mild drought. . Ann. Bot. , 89 : 887 – 894 .
  • Costa , G. , Michaut , J. C. and Morel , J. L. 1994 . Influence of cadmium upon water relations and gas exchanges in phosphorus deficient . Lupinus albus. Plant Physiol. Biochem. , 32 : 105 – 114 .
  • Cruz , J. A. , Avenson , T. J. , Kanzwa , A. , Takisawa , K. , Edwards , G. E. and Kramer , D. M. 2004 . Plasticity in light reaction of photosynthesis for energy production and photo production. . J. Exp. Bot. , 56 : 395 – 406 .
  • De Graff , M. C.C. , Bobbink , R. , Roelofs , J. G.M. and Verbeek , P. J.M. 2001 . Differential effects of ammonium and nitrate on three health and species. . Plant Ecol. , 135 : 185 – 196 .
  • Dicagno , R. , Guidi , L. , Stefani , A. and Soldatini , G. F. 1999 . Effects of cadmium on growth of Helianthus annuus seedlings: physiological aspects. . New Phytol. , 144 : 65 – 71 .
  • Gouia , H. , Chaffei , C. and Ghorbel , M. H. 2007 . “ Differential toxicological responses to cadmium stress of bean seedlings grown with NO3 − or NH4+ as nitrogen source. ” . In Int. J. Botany Vol. 4 , 1 – 10 .
  • Guo , A. , Bruck , H. and Sattelmacher , B. 2002 . Effects of supplied nitrogen form on growth and water uptake of Fresh bean (Phasoelus vulgaris L.) plants. . Plant Soil , 239 : 267 – 275 .
  • Harbinson , J. , Genty , B. and Baker , N. R. 1990 . The relationship between CO2 assimilation and electron transport in leaves. . Photosynth. Res. , 25 : 213 – 224 .
  • Heiss , S. , Watcher , A. , Bogs , J. , Cobbett , C. and Rausch , T. 2003 . Phytochelatin syntase (PCS) protein is induced in Brassica juncea leaves after prolonged Cd exposure. . J. Exp. Bot. , 389 : 1833 – 1839 .
  • Jemal , F. , Zarrouk , M. and Ghorbel , M. H. 2000 . Effects of cadmium on lipid composition of pepper. . Biochem. Soc. Trans. , 28 : 907 – 910 .
  • Kolber , Z. S. , Zeher , J. and Falkowski , P. G. 1988 . Effects of growth irradiance and nitrogen limitation on photosynthetic energy conversion in photosystem II. . Plant Physiol. , 88 : 72 – 93 .
  • Krall , J. P. and Edwards , G. E. 1990 . Quantum yields of photosystem II. Electron transport and CO2 fixation in C4 plants. . Austr. J. Plant Physiol. , 17 : 579 – 588 .
  • Krupa , Z. , Oquist , G. and Huner , N. P.A. 1993 . The effects of cadmium on photosynthesis of Phasoelus vulgaris; a fluorescence analysis. . Physiol. Plant. , 88 : 626 – 630 .
  • Laporte , M. M. , Shen , B. and Traczynki , M. C. 2002 . Engineering for drought avoidance expression of maize NADP-mallic enzyme in tobacco results in altered stomatal function. . J. Exp. Bot. , 53 : 699 – 705 .
  • Lasa , B. , Frechilla , S. , Aparicio-Tejo , P. M. and Lamsfus , C. 2002 . Role of glutamate dehydrogenase and phosphoenolpyruvate carboxylase activity in ammonium nutrition tolerance in roots. . Plant Physiol. Biochem. , 40 : 969 – 976 .
  • Lawlor , D. W. and Cornic , G. 2002 . Photosynthetic carbon assimilation and associated metabolism in relation to water deficit in higher plants. . Plant. Cell. Env. , 25 : 275 – 294 .
  • Limpens , J. and Berendse , F. 2003 . Growth reduction of Sphagnum magellanicum subjected to high N deposition. The role of aminoacid N concentration. . Oecologia , 135 : 339 – 345 .
  • Lopes , M. S. and Arans , J. L. 2006 . Nitrogen source and water regime effects on durum wheat photosynthesis and stable carbon and nitrogen isotope composition. . Physiol. Plant. , 126 : 435 – 445 .
  • Lopes , M. S. , Noguies , S. and Arans , J. L. 2004 . Nitrogen source and water regime effects on barley photosynthesis and isotope signature. . Funct. Plant. Biol. , 31 : 995 – 1003 .
  • Malaksymiec , W. and Baszynski , T. 1988 . The effect of Cd2+ on the release of proteins from thylakoid membranes of tomato leaves. . Acta Soc. Bot. Pol. , 57 : 465 – 474 .
  • Maksymiec , W. and Krupa , Z. 2002 . Jasmonic acid and heavy metals in Arabidopsis plants a similar physiological response to both stressors. . J. Plant Physiol. , 159 : 509 – 515 .
  • Meloni , D. A. , Oliva , D. A. , Martinez , C. A. and Cambrai , A. 2003 . Photosynthesis and activity of super oxide dismutase, peroxidase and glutathione reductase in cotton under salt stress. . Envir. Exper. Bot. , 49 : 69 – 76 .
  • Metwally , A. , Safronova , V. I. , Belimov , A. A. and Dietz , K. J. 2005 . Genotypic variation of the response to cadmium toxicity in Pisum sativum L. . J. Exp. Bot. , 409 : 167 – 178 .
  • Mobin , M. and Khan , N. A. 2006 . Photosynthetic activity, pigment composition and antioxidative response of two mustard (Brassica juncea) cultivars differing in photosynthetic capacity subjected to cadmium stress. . J. Plant Physiol. , 1 : 1 – 10 .
  • Mysliwa-Kurdziedl , B. and Strzalka , K. 2005 . Influence of Cd(II), Cr(II) and Fe (III) on early steps of detiolation process in wheat: fluorescence spectral exchanges of chlorophyll and newly formed chlorophyll. . Agricul. Ecosyst. Envir. , 106 : 199 – 207 .
  • Ouariti , O. , Gouia , H. and Ghorbel , M. H. 1997 . Responses of bean and tomato plants to cadmium: growth, mineral nutrition and nitrate reduction. . Plant Physiol. Biochem. , 35 : 347 – 354 .
  • Pagliano , C. , Raviolo , M. , Vecchia , F. D. , Gabbrielli , R. , Gonnelli , C. , Rascio , N. , Barbato , R. and Rocca , N. L. 2006 . Evidence for PSII donor-side damage and photoinhibition induced by cadmium treatment on rice (Oryza sativa L.). . J. Photochem. Photobio. , 84 : 70 – 78 .
  • Papazoglou , E. G. , Karantounias , G. A. , Vemmos , S. V. and Bouranis , D. L. 2005 . Photosynthesis and growth responses of giant reed (Arundo donax L.) to the heavy metals Cd and Ni. . Environ. Int. , 31 : 243 – 249 .
  • Parkhill , J. P. , Maillet , G. and Cullen , J. J. 2001 . Fluorescence- based maximal quantum yield for PSII as a diagnostic of nutrient stress. . J. Phycol. , 37 : 517 – 529 .
  • Preira , G. J.G. , Molina , S. M.G. , Lea , P. J. and Azevedo , R. A. 2002 . Activity of antioxidant enzymes in response to cadmium in . Crotalaria juncea. Plant Soil , 239 : 123 – 132 .
  • Protocos , M. C.F. 2000 . “ Physiological ecology. ” . In Bryophyte Biology. Edited by: Shaw , A. J. and Coffinet , B. 225 – 247 . Cambridge University Press .
  • Roosens , N. , Verbruggen , N. , Meerts , P. , Ximenez-Embun , P. and Smith , J. A.C. 2003 . Natural variation in cadmium tolerance and its relationship to metal hyper accumulation for even populations of Thlaspi caerulescens from Western Europe. . Plant Cell Environ. , 26 : 1675 – 1672 .
  • Sandalio , L. M. , Daluzo , H. C. , Gomez , M. , Romer-Puarteas , M. C. and Del Rio , L. A. 2001 . Cadmium induced changes in the growth and oxidative metabolism of pea plants. . J. Exp. Bot. , 52 : 2115 – 2126 .
  • Schreiber , U. , Bilger , W. and Neubauer , C. 1994 . “ Chlorophyll fluorescence as a non intrusive indicator for rapid assessment of in vivo photosynthesis. ” . In Ecophysiol. Photosynth. 49 – 70 .
  • Siedlecka , A. and Krupa , Z. 1996 . Interaction between cadmium and iron and its effects on photosynthetic capacity of primary leaves of . Phaseolus vulgaris. Plant Physiol. Biochem. , 34 : 833 – 841 .
  • Somashekaraiah , B. V. , Padmaja , K. and Prasad , A. R.K. 1992 . Phytotoxicity of cadmium ions on germinating seedlings of mung bean (Phaseolus vulgaris): Involvement of lipid peroxides in chlorophyll degradation. . Physiol. Plant. , 85 : 85 – 89 .
  • Toth , V. R. , Meszaros , I. , Veres , S. and Nagy , J. 2002 . Effects of the available nitrogen on the photosynthetic activity and xanthophyll cycle pool of maize in field. . J. Plant Physiol. , 159 : 627 – 684 .
  • Van Kooten , O. and Snel , J. F.H. 1990 . The use of chlorophyll II fluorescence nomenclature in plant stress physiology. . Photosynth. Res. , 27 : 121 – 133 .
  • VonWell , E. and Fossey , A. 1998 . A comparative investigation of seed germination, metabolism and seedling growth between two polyploid Triticum species. . Euphytica , 101 : 83 – 89 .
  • Xochilt , G. V. , Edmundo , G. M. , Quintin , R. C. , E Luis , H. and Gerardo , A. A.S. 2005 . Chlorophyll accumulation is enhanced by osmotic stress in graminaceous chloro- phyllic cells. . J. Plant Physiol. , 162 : 650 – 6615 .

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.