139
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Spatial Localization of Germin-Like Oxalate Oxidase Genes in Developing Wheat Shoots

, , &
Pages 10-14 | Published online: 15 Apr 2014
 

ABSTRACT

When quiescent embryos in dry grains of ripened wheat are isolated and provided with ample water and oxygen at an appropriate temperature, they begin to grow very rapidly. The onset of the growth is signaled by nascent synthesis of germin genes which encodes a relatively rare, water-soluble homop entameric glycoprotein. Germin is resistant to pepsin digestion under conditions that lead to hydrolysis of virtually all other proteins in wheat embryos. Germin proteins have oxalate oxidase activity, an activity that degrades oxalic acid to generate hydrogen peroxide which involves in many aspects of plant development.

Following 48-hour imbibition on water, wheat embryos give rise to distinguishable shoot and roots. Shoots comprise coleoptile, leaf primordium and shoot apex. In the current study, non-radioactively labeled germin riboprobes were prepared by in vitro transcription. The riboprobes were used to search and localize germin mRNAs in sections taken from throughout of shoots. The results revealed that although leaf primordium and shoot apex did not show any signals of the presence of germin mRNAs, coleoptiles as a whole tissue displayed germin gene expression on epidermal cells and vascular bundle sheath cells. Among the sections taken from different parts of shoots, the sections from middle part gave the strongest signals on coleoptile cells.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.