Publication Cover
Redox Report
Communications in Free Radical Research
Volume 1, 1995 - Issue 2
4
Views
6
CrossRef citations to date
0
Altmetric
Original Articles

Control of NADH ferricyanide reductase activity in the human erythrocyte by somatotrophin and insulin

, &
Pages 113-117 | Published online: 13 Jul 2016
 

SUMMARY

Reduction of external ferricyanide by the human erythrocyte is significantly stimulated by insulin and somatotrophin at concentrations above physiological levels. Basal (in absence of hormones) and hormone-stimulated activities are attenuated in the presence of glycolytic inhibitors iodoacetate and vanadate indicating the requirement of glycolytic substrates for the reduction process and for the activation of cellular metabolism in response to the hormones. Sulfhydryl reagents like N-ethylmaleimide also attenuate the basal and hormone-stimulated activities and this effect was rationalized on the basis of action at SH sites which trigger responses to hormones. Stimulation of ferricyanide reduction by insulin and somatotrophin may be also the result of Na+/H+ antiport activation which may be prevented by amiloride. This suggests that Na+/H+ antiport is part of the membrane transduction system for insulin and somatotrophin in the human erythrocyte. These observations are a contribution to the study of plasma membrane oxidoreductase systems involved in physiological and metabolic functions of the cell.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.