26
Views
0
CrossRef citations to date
0
Altmetric
Short Communication

Brain-derived human immunodeficiency virus-1 Tat exerts differential effects on LTR transactivation and neuroimmune activation

, , , , , , , & show all
Pages 173-184 | Received 07 Jun 2006, Accepted 18 Jan 2007, Published online: 10 Jul 2009
 

Abstract

Molecular diversity within brain-derived HIV-1 sequences is highly variable depending on the individual gene examined and the neurological status of the patient. Herein, we examined different brain-derived human immunodeficiency virus (HIV)-1 tat sequences in terms of their effects on LTR transactivation and host gene induction in neural cells. Astrocytic and monocytoid cells co-transfected with prototypic tat clones derived from non-demented (ND) (n = 3) and demented (HAD) (n = 3) AIDS patients and different HIV-LTR constructs revealed that LTR transactivation mediated by tat clones derived from HAD patients was decreased (p < 0.05). A Tat-derived peptide containing the amino acid 24–38 domain from a ND clone caused down-regulation of the LTR transactivation (p < 0.05) in contrast to peptides from other Tat regions derived from HAD and ND tat clones. Both brain-derived HAD and ND tat constructs were able to induce the host immune genes, MCP-1 and IL-1β. Microarray analysis revealed several host genes were selectively upregulated by a HAD-derived tat clone including an enzyme mediating heparan sulphate synthesis, HS3ST3B1 (p < 0.05), which was also found to be increased in the brains of patients with HAD. Expression of the pro-apoptotic gene, PDCD7, was reduced in cells transfected with the HAD-derived tat clone and moreover, this gene was also suppressed in monocytoid cells infected with a neurotropic HIV-1 strain. Thus, mutations within the HIV-1 tat gene may exert pathogenic effects contributing to the development of HAD, which are independent of its effects on LTR transactivation.

The authors thank Belinda Ibrahim for assistance with manuscript preparation, Martine Ooms, Megan Patrick, Linda Cox and Mayi Arcellana-Panlilio for technical assistance and Guido van Marle for helpful discussions. LAB was supported by an Alberta Heritage Foundation for Medical Research (AHFMR)/ Canadian Institutes of Health Research (CIHR) Fellowship. CP holds a Canada Research Chair (T1) in Neurological Infection and Immunity and is an AHFMR Senior Scholar. These studies were supported by grants from the CIHR (CP) and CANFAR (CP).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.