Publication Cover
Neurocase
Behavior, Cognition and Neuroscience
Volume 15, 2009 - Issue 2
63
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

The relationship between visual orienting and interlimb synchrony in a patient with a superior parietal infarction: A case study

, &
Pages 73-88 | Received 26 Mar 2008, Accepted 10 Nov 2008, Published online: 28 Mar 2009
 

Abstract

Much work indicates that parietal cortex mediates the transformation of visual information into the motor commands necessary for successful performance of many unimanual tasks. Accumulating evidence suggests that parietal cortex also mediates the coordination of bimanual movements, during which the natural tendency is to couple the limbs temporally. However, the extent to which parietal oculomotor and/or visual processes contribute to temporal coupling of the limbs during bimanual task performance is unknown. In the current study, we monitored the eye movements of a patient with a left parietal infarction as she performed a series of bimanual visuomotor tasks. We demonstrate the impact of an ipsilesional (leftward) orientation bias on her ability to synchronize the onset of bimanual limb movements; the movements were performed in serial fashion, i.e., left limb before right, when the patient was permitted to freely shift saccades and the visual target cuing the left (ipsilesional) limb movement was presented at greater (leftward) eccentricities. Disruption of interlimb synchrony as such was not, however, evident when the patient was required to fixate or when visual targets were presented at lesser ipsilesional eccentricities. Additionally, despite the disruptive influence of oculomotor and visual factors on interlimb synchrony, the patient appeared capable of using visual feedback to straighten the right (contralesional) limb trajectory, thus improving the spatial component of task performance. Results suggest that parietal cortex plays an important role in the coordination of limb movements during performance of bimanual visuomotor tasks. This role appears to involve orienting gaze or attention to the goals of each limb so that the nervous system can synchronize the activity of both limbs and thereby ensure successful task completion.

The authors would like to thank Drs Lumy Sawaki and Christos Constantinidis for skillful editing and insightful discussion. This work was supported by The National Institutes of Health Grant PO1 HD35955, The National Institutes of Health Training Grant in Hearing and Multisensory Research, and The James and Beverly Johnston Family Research Fund for the Neurosciences.

Disclosure: This manuscript is not currently submitted or published elsewhere.

Notes

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.