258
Views
7
CrossRef citations to date
0
Altmetric
Original Articles

Coupled human body and side impact model to predict thoracic response

&
Pages 394-413 | Received 18 Oct 2013, Accepted 26 Mar 2014, Published online: 06 May 2014
 

Abstract

Significant advances have been made in automotive safety; however, thoracic injuries resulting from side impact collisions continue to be a leading cause of fatality and severe injury. The goal of this study was to investigate thoracic response in side impact crash conditions using a detailed human thorax model to provide an improved understanding of side impact injury and the primary contributing factors. This study builds on an advanced numerical thorax and human model, which has been validated using available post-mortem human subject test data for pendulum and side sled impact tests. Crash conditions were investigated through the development of a coupled door and seat model to reproduce full-scale crash tests. The model accounts for several important factors that contribute to occupant response as noted in the literature: the relative velocities between the seat and door, the occupant to door distance, door shape, and door compliance. Importantly, the door and seat models were developed using experimental data and the coupled side impact model was validated using Federal Motor Vehicle Safety Standard (FMVSS) 214 and Insurance Institute for Highway Safety (IIHS) side impact test data, comparing the thoracic response predicted by the model to that of the EuroSID-2 (ES-2) dummy used in the crash tests. The side impact model correlated well with the thoracic compression, velocity, and viscous criterion (VC) response of the ES-2 in full-scale crash tests. Finally, the model was used to demonstrate the effects of seat foam stiffness, arm position, and restraint system on thoracic injury. It was found that both the presence of a restraint system as well as stiffer seat foam acted to improve the occupant contact with the seat and reduced thoracic response and the potential for injury. Importantly, it was found that the position of the occupant's arms can contribute to thoracic injury by causing a localised loading of the chest when the arm is aligned with the thorax. Occupant protection in side impact is challenging due to the limited door to occupant spacing associated with lateral collisions. However, the study has shown that there are several factors that may be utilised to further improve occupant safety in side impact collisions.

Acknowledgements

The authors would like to express their appreciation to the Natural Sciences and Engineering Research Council of Canada and General Motors of Canada Limited for funding this work.

Additional information

Funding

This work is supported by General Motors of Canada Limited; the Premier's Research Excellence Award.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.