964
Views
29
CrossRef citations to date
0
Altmetric
Original Articles

Numerical analysis of low-velocity rigid-body impact response of composite panels

, , &
Pages 27-43 | Received 18 Dec 2013, Accepted 05 Sep 2014, Published online: 29 Sep 2014
 

Abstract

This paper investigates various modelling strategies to identify the most suitable approach for modelling the low-velocity impact response of laminated composite panels. The purpose of this paper is to thoroughly investigate a dropped tool scenario or a ground vehicle impact on an aircraft fuselage panel using detailed numerical models. Three-dimensional meso-scale finite element models have been developed and implemented with user-defined material subroutines in ABAQUS/Standard. The models predict the simultaneous evolution of inter-laminar and intra-laminar damage mechanisms that occur in composite panels during impact. The paper describes the implementation of the combined inter/intra-laminar models and assesses their performance. User-defined material models developed in previous work for quasi-static problems have been further developed in this paper for damage analysis under impact loading. Experimental drop-weight impact tests, representative of low-velocity high-energy rigid-body impacts, have been carried out for model validation. Impact energy levels were varied from 10 to 40 J to evaluate the damage threshold and damage area that develops within the laminate. The results of the combined inter/intra-laminar model are in excellent agreement with experimental data, especially in terms of energy absorbed during impact. Numerical results provide an accurate description of the threshold at which a significant change in laminate stiffness occurs. It is shown conclusively that the combined inter/intra-laminar damage model developed in this work can be employed as an accurate predictive tool for low-velocity impact events.

Additional information

Funding

The research leading to these results has received funding from the European Community's Seventh Framework Programme FP7/2007-2013 [grant number 213371] (MAAXIMUS, www.maaximus.eu).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.