181
Views
10
CrossRef citations to date
0
Altmetric
Articles

Optimisation and validation of full and half foam filled double circular tube under multiple load cases

ORCID Icon, , &
Pages 389-398 | Received 27 Dec 2017, Accepted 12 Mar 2018, Published online: 15 Feb 2019
 

Abstract

In this study, numerical results are conducted to determine the deformation mode of foam filled double circular tubes, namely; half foam filled double circular tube (FD), and full foam filled double circular tube (DD) under oblique loading. To validate the simulation and experimental results, two-parameter Weibull probability distribution was used. The proposed function of the multi-objective optimisation design (MOD) process was based on the Finite Element Analysis results. The metamodels in were constructed to predict the crashworthiness criteria of specific energy absorption and peak crushing force under oblique impact loading. Also examined in the study were the MOD problems of the two structure types under multiple impact angles using the NSGA II algorithm. The findings from the study determined that the optimal full foam filled double circular tube had better crashworthiness under pure axial loading. While the optimal half foam filled, double circular tube had more space to enhance the crashworthiness under an oblique impact.

Disclosure statement

No potential conflict of interest was reported by the authors.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.