402
Views
4
CrossRef citations to date
0
Altmetric
Research Articles

Friction stir welding of thick section reduced activation ferritic–martensitic steel

, , , &
Pages 666-676 | Received 06 Feb 2018, Accepted 03 Apr 2018, Published online: 01 May 2018
 

Abstract

Full penetration friction stir welding was conducted on 12 mm thick reduced activation ferritic–martensitic steel at tool rotational speeds of 500 and 900 rev min−1. Comparator welds at 500 rev min−1 were also produced in 6 mm thick reduced activation ferritic–martensitic steel plate to evaluate section thickness effects. Increase in section thickness led to an increase in heat input, which strongly influenced the microstructure evolution in stir zone (SZ), thermo-mechanical affected zone and the overall hardness in the SZ of this steel. In the as-welded condition, the base metal microstructure was significantly altered and resulted in carbide-free grain boundaries. The desirable microstructure and mechanical properties were achieved by subjecting the as-welded joints to appropriate post-weld heat treatments.

Disclosure statement

No potential conflict of interest was reported by the authors.

Additional information

Funding

This research work was supported by the Board of Research in Nuclear Sciences (BRNS-PFRC), Department of Atomic Energy, Government of India.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.