224
Views
3
CrossRef citations to date
0
Altmetric
Research Article

An Artificial Neural Network for Predicting the Near-fault Directivity-pulse Period

, &
Pages 4681-4700 | Received 08 Mar 2019, Accepted 12 Oct 2020, Published online: 05 May 2021
 

ABSTRACT

The velocity pulses produced by forward-directivity effects in the near-fault regions can have destructive effects on structures. Proper estimation of the duration of such velocity pulses is an essential step in the near-fault seismic hazard analysis and mitigating potential damage. In this study, the effects of different source, path, source-to-site geometry, and local site parameters on the duration of directivity pulse (Tp) are investigated based on the mutual information (MI) concept. A dataset of near-fault pulse-like ground motions from the NGA-West2 database including 135 observations from 17 strike-slip events and 14 non-strike-slip events is utilized for the purpose of this study. The selected ground motion variables are the magnitude, hypocentral distance, depth, D and VS30 that are further applied in an artificial neural network (ANN) to predict Tp. The ANN estimates are verified by support vector regression (SVR) as one of the most efficient machine learning algorithms. High correlation between observations and predictions and low error functions reveals the good predictive ability of both ANN and SVR for estimating directivity pulse period. The predictions made by ANN and SVR are further compared with those provided by the empirical and physical models.

Acknowledgments

We thank three anonymous reviewers for their valuable comments which led to further improvements of the manuscript. The second author would like to acknowledge the Icelandic Centre for Research for funding this research under the Project Grant (No. 196089-051).

Additional information

Funding

This work was supported by the Icelandic Centre for Research [No. 196089-051].

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.