161
Views
49
CrossRef citations to date
0
Altmetric
Original Articles

Effect of Mg and Cu additions on the microstructural characteristics and tensile properties of Sr-modified Al-Si eutectic alloys

, , &
Pages 235-253 | Received 03 Jul 2001, Accepted 16 Nov 2001, Published online: 29 Nov 2016
 

Abstract

The present work was performed on twenty-one alloys containing Al-11.5 wt% Si, with magnesium (Mg) in the range of 0.1–0.4 wt%, and copper (Cu) in the range of 1.0–3.0 wt%. Fluidity measurements and thermal analysis for each of these alloy melts were carried out. The alloys were cast in the form of tensile test bars. The test bars were solution heat treated at a temperature of ~500°C for 8h, then quenched in hot water (60°C), followed by artificial ageing at 155°C for 5 h, and then cooling in air. The effects of Mg and Cu additions on the tensile properties, depression in the Al-Si eutectic temperature, and microstructural characteristics (Si and Cu-phase particle characteristics and morphology) have been discussed in detail. The results show that the addition of Mg decreases the fluidity and the eutectic Si temperature. While addition of Cu also decreases the eutectic temperature, the fluidity, however, is increased. The presence of Mg and Cu decreases the modifying effect of Sr on the Si particles due to an increase in the solidification time, as well as the Sr, Mg, Cu interactions that occurs as a result of these additions. Mg additions in the range of 0.1–0.4 wt% increase YS (from 22% up to 94%) and UTS (from 7% up to 52%) and decrease the percent elongation (40%) depending on the Cu content of the alloy, i.e., the higher the Cu content, the lower the increase in strength. Addition of Cu has a similar effect on YS and UTS at alloy Mg levels of 0.1 wt% only, with no effect at higher Mg values, while elongation continuously decreases. The volume fraction of Al2Cu phase increases by approximately 0.76% for every 1 wt% increase in Cu. This observation is important in the selection of the appropriate solution heat treatment regime in order to avoid incipient melting.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.