31
Views
11
CrossRef citations to date
0
Altmetric
Original Articles

Localization and conductance in the quantum Coulomb glass

&
Pages 1117-1129 | Published online: 25 Aug 2009
 

Abstract

We consider the combined influence of disorder, electron4ectron interactions and quantum hopping on the properties of electronic systems in a localized phase, approaching an insulator-metal transition. The generic models in this regime are the quantum Coulomb glass and its generalization to electrons with spin. After introducing these models we explain our computational method, the Hartree-Fock-based diagonalization. We then discuss the conductance and compare spinless fermions and electrons. It turns out that spin degrees of freedom do not play an essential role in the systems considered. Finally, we analyse localization and decay of single-particle excitations. We find that interactions generically tend to localize these excitations, which is a result of the Coulomb gap in the single-particle density of states.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.