25
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Imaging point defects using a transmission electron microscope with controllable spherical aberration

Pages 1687-1699 | Published online: 25 Aug 2009
 

Abstract

Computer simulations are utilized to show how to use a transmission electron microscope which has an objective lens with an adjustable coefficient of spherical aberration to determine the three spatial coordinates of a single heavy atom embedded in a crystal. This information can be obtained by forming an image with only those electrons that have been scattered through a large angle by the crystal. By using a high-angle annular dark-field aperture the atoms can be considered as independent scatterers, in contrast with imaging with low-angle coherent scattering. In addition, by reducing the aberration coefficients of the lens, the effective outer radius of the aperture can be made large, thereby leading to a small depth of focus. Calculations show that this form of imaging produces detectable contrast with currently available aberration correctors. sources and detectors.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.