46
Views
11
CrossRef citations to date
0
Altmetric
Original Articles

High-resolution electron microscopy and microanalysis of ordered arrays of size-controlled amorphous gallium nitride nanoparticles synthesized in situ in a block copolymer matrix

, , , , , , & show all
Pages 1047-1054 | Received 26 Nov 2001, Accepted 29 Nov 2001, Published online: 04 Aug 2009
 

Abstract

The objective of this work was to produce an ordered array of size-controlled gallium nitride (GaN) nanoparticles. The synthesis was performed by the in situ formulation and subsequent decomposition of cyclotrigallazane in a polystyrene (PS)-b-poly(4-vinylpyridine) (b-P4VP) block copolymer matrix. The matrix served as a templating medium to constrain the particle size and to allow the control of particle morphology, spacing and packing arrangement. The size and spacing of nanoparticles were controlled by the molecular weight of the entire polymer chain (81 000g mol−1), and the particle morphology and packing arrangement were controlled by the ratio of the sequestering block to the matrix block (21 wt% P4VP to 79 wt% PS by elemental analysis). High-resolution and analytical transmission electron microscopy revealed the amorphous nanoparticles to be composed mainly of gallium and nitrogen (with oxygen detected in some particles) about 10nm in diameter with an average interparticle distance of 60 nm and organized in a regular hexagonal packing arrangement. The impact of this synthesis technique is to afford the means to investigate systematically the effect of quantum confinement and quantum coupling on the optical properties of small GaN particles.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.