47
Views
16
CrossRef citations to date
0
Altmetric
Original Articles

Glass transition for dipolar hard spheres: A mode-coupling approach

&
Pages 305-311 | Published online: 13 Aug 2009
 

Abstract

We apply the self-consistent mode-coupling equations, which were recently derived for molecular liquids, to a system of dipolar hard spheres. Making use of the direct correlation function in a mean spherical approximation and with a restriction of the rotational quantum number 1 to zero and one, we find three different phases in the η—T phase space. η and T denote the packing fraction and the temperature respectively. There is one phase where both the transitional degrees of freedom (TDOFs) and the orientational degrees of freedom (ODOFs) are ergodic (liquid), another phase with frozen TDOFs and ergodic ODOFs, and a third phase where TDOFs and ODOFs are frozen (glass). The dynamical transitions between these phases are discussed.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.