28
Views
29
CrossRef citations to date
0
Altmetric
Original Articles

Random-matrix models with the logarithmic-singular level confinement: Method of fictitious fermions

&
Pages 1161-1171 | Published online: 13 Aug 2009
 

Abstract

A joint distribution function of N eigenvalues of a U(N) invariant random-matrix ensemble can be interpreted as a probability density of finding N fictitious non-interacting fermions to be confined in a one-dimensional space. Within this picture, a general formalism is developed to study the eigenvalue correlations in non-Gaussian ensembles of large random matrices possessing non-monotonic log-singular level confinement. An effective one-particle Schrödinger equation for wavefunctions of fictitious fermions is derived. It is shown that eigenvalue correlations are completely determined by the Dyson density of states and by the parameter of the logarithmic singularity. Closed analytical expressions for the two-point kernel in the origin, bulk and soft-edge scaling limits are deduced in a unified way, and novel universal correlations are predicted near the end point of the single spectrum support.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.