159
Views
26
CrossRef citations to date
0
Altmetric
Original Articles

Co-sputtering C-Cu thin film synthesis: Microstructural study of copper precipitates encapsulated into a carbon matrix

, , , &
Pages 501-516 | Received 06 Nov 1997, Accepted 13 Sep 1998, Published online: 20 Aug 2009
 

Abstract

Co-sputtered C-Cu thin film depositions have been performed in the temperature range 80-873 K, the atomic carbon concentration varying from 16% to 96%. To characterize the microstructure of the C-Cu thin films, transmission electron microscopy, extended X-ray absorption fine structure and grazing incidence small angle X-ray scattering experiments have been used. During the deposition process, a demixing occurs of the carbon and copper species due to their very low solubilities that leads to the formation of nanometric copper precipitates homogeneously distributed in a more or less graphitic matrix. These precipitates have an elongated shape in the direction of the thin film growth. When the deposition was performed at 273 K for copper atomic concentrations CCu > 55%, as well as for all thin films synthesized at 573 K whatever the CCu value, the formation of graphene layers parallel to the surface of the copper precipitates was observed so that an encapsulation of the Cu aggregates in carbon cages occurs. We propose that surface diffusion of the different species occurring during the deposition process leads to the demixing of carbon and copper. Thus, we suggest that the copper acts as a catalyst for graphitization of carbon to explain the formation of such structures at temperatures as low as those used in these experiments.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.