648
Views
19
CrossRef citations to date
0
Altmetric
Original Articles

Development of a reduced chemical kinetic mechanism for a gasoline surrogate for gasoline HCCI combustion

, &
Pages 107-124 | Received 25 Sep 2009, Accepted 24 Sep 2010, Published online: 13 Dec 2010
 

Abstract

A reduced chemical kinetic mechanism consisting of 48 species and 67 reactions is developed and validated for a gasoline surrogate fuel. The surrogate fuel is modeled as a blend of iso-octane, n-heptane, and toluene. The mechanism reduction is performed using sensitivity analysis, investigation of species concentrations, and consideration of the main reaction path. Comparison between ignition delay times calculated using the proposed mechanism and those obtained from shock tube data show that the reduced mechanism can predict delay times with good accuracy at temperatures above 1000 K. The mechanism can also predict the two-stage ignition at the moment of ignition. A rapid compression machine (RCM) is designed to measure ignition delay times of gasoline and gasoline surrogates at temperatures between 890 and 1000 K. Our experimental results suggest that a new gasoline surrogate that has a different mixture ratio than previously defined surrogates is the most similar to gasoline. In addition, the reduced mechanism is validated for the RCM experimental conditions using CFD simulations.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.