270
Views
4
CrossRef citations to date
0
Altmetric
Original Articles

Numerical investigation of laminar cross-flow non-premixed flames in the presence of a bluff-body

, , &
Pages 692-710 | Received 27 May 2014, Accepted 09 Sep 2014, Published online: 31 Oct 2014
 

Abstract

A knowledge of flame stability regimes in the presence of cylindrical bluff-bodies of various dimensions is essential to design non-premixed burners. The reacting flow field in such cases is reported to be three-dimensional and unsteady. In the literature, only a few experimental investigations with limited measurements are available. Therefore, in this work, a detailed numerical study of laminar cross-flow non-premixed methane–air flames in the presence of a square cylinder is presented. The flow, temperature, species and reaction fields have been predicted using a comprehensive transient three-dimensional reacting flow model with detailed chemical kinetics and variable thermo-physical properties, in order to get a good insight into the flame stabilisation phenomena. Further, analyses of quantities such as local equivalence ratio, cell Damköhler number, species velocity, net consumption rate of methane, which are not easily obtained through experiments even with detailed diagnostics, have been carried out. The influence of the flow field due to varying inlet velocity of the oxidiser, in the presence of the bluff-body, on flame anchoring location has been analysed in detail. Local equivalence ratio contours obtained from non-reacting flow calculations are seen to be quite useful in analysing the mixing process and in the prediction of flame anchoring locations when the flames are not separated. Cell Damköhler number has been calculated using cell size, species velocity of the fuel, which is a derived quantity, and the net reaction rate of the fuel. The flame zone, which is customarily inferred from the contours of temperature, CO and OH, is also shown to be predicted well by the contour line corresponding to a Damköhler number equal to unity. The net reaction rate of CH4 and the net rates of two dominant reactions, which consume methane, show clearly the variation in the flame anchoring locations in these three cases. Further, the three-dimensionality of these flames are analysed by plotting the mean temperature contours in yz planes. Finally, the unsteadiness in the separated flame case is analysed.

Acknowledgements

The authors wish to thank the P.G. Senapathy Computing Center for providing the software licences for carrying out this work and the Product Group, DELL Inc. for partially supporting this work through a hardware donation. The authors would also like to thank the reviewers for their constructive comments and suggestions.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.