343
Views
5
CrossRef citations to date
0
Altmetric
Original Articles

Kinetic analysis of n-decane–hydrogen blend combustion in premixed and non-premixed supersonic flows

, , , &
Pages 99-130 | Received 26 Dec 2014, Accepted 20 Oct 2015, Published online: 14 Jan 2016
 

Abstract

Numerical analysis of ignition and combustion of an n-decane–hydrogen fuel blend in a premixed supersonic flow and in a model scramjet duct is performed using a reduced reaction mechanism built especially to describe the oxidation of blended n-C10H22–H2 fuel in air at the temperature T0 > 900–1000 K in the pressure range P0 = 0.1–13 atm. The developed kinetic mechanism involves the principal reactions responsible for chain mechanism development both for n-decane and for hydrogen oxidation. It has been shown that using blended n-C10H22–H2 fuel makes it possible to enhance the ignition and combustion both in premixed and in non-premixed supersonic fuel–air flows compared to burning pure hydrogen–air and n-decane–air mixtures. This allows high combustion completeness in the scramjet duct at the distance of ∼1 m even at extremely low air temperature T0 = 1000 K and pressure P0 = 0.3 atm. This is due to the interaction of kinetics of the formation of highly reactive atoms and radicals, carriers of chain mechanism, in H2–air and n-C10H22–air mixtures.

Additional information

Funding

This work was supported by the Russian Foundation for Basic Research [grants 14-08-00743a; 13-01-00786a; 14-08-90034-Бел_а].

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.