124
Views
28
CrossRef citations to date
0
Altmetric
Original Articles

Cell structure and stability of detonations with a pressure-dependent chain-branching reaction rate model

&
Pages 93-112 | Published online: 08 Nov 2010
 

We examine detonation waves with a four-step chain-branching reaction model that exhibits explosion limits close to the two lower limits of hydrogen–oxygen chemistry. The reaction model consists of a chain-initiation step and a chain-branching step, both temperature-dependent with Arrhenius kinetics, followed by two pressure-dependent termination steps. Increasing the chain-branching activation energy or the overdrive shortens the reaction length in the ZND wavelength and leads to more unstable detonations, according to multi-dimensional linear stability analysis. Corresponding numerical simulations show that detonations with weak chain-branching reactions have a wave structure similar to those with a single-step reaction; strong chain-branching detonations show distinct keystone features. Keystone regions are bounded by a discontinuity in reactivity across the shear layers emanating from the triple points at the intersection of the transverse waves and the main front. Especially in the strong case, chain-branching occurs within a thin front at the back side of the keystone figure, or immediately behind Mach stems.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.