273
Views
17
CrossRef citations to date
0
Altmetric
Original Articles

Numerical simulation of premixed chemical reactions with swirl

, &
Pages 863-887 | Received 14 Jul 2006, Accepted 08 Jan 2007, Published online: 23 Nov 2007
 

Abstract

Direct numerical simulation is used to study the development of exothermic chemical reactions in a dilute, premixed, low speed, inviscid, axisymmetric, swirling flow in a straight, open, cylindrical pipe. Attention is focused on the complex interplay between the swirl and heat release of the chemical reaction and the objective is to determine, as a function of exothermicity, the critical swirl level corresponding to the first appearance of vortex breakdown in the reactive flow. It is found that for a given exothermicity, a large-amplitude structure develops around the pipe axis as the swirl level increases, and a near-stagnant breakdown zone appears when the swirl exceeds a critical level. These features are accompanied by significant changes in the temperature and reactant fields and the appearance of a hot core close to the inlet. As exothermicity is raised from low levels to higher, the critical swirl exhibits a nonlinear change; it first decreases and then, above a certain level of exothemicity, increases. An analysis of the governing equations attributes this behaviour to the nonlinear interaction between the advection of azimuthal vorticity and the baroclinic effects resulting from the coupling between the velocity and temperature gradients.

Acknowledgement

This research was carried out with the support of the National Science Foundation under Grant CTS-9904327.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.