448
Views
28
CrossRef citations to date
0
Altmetric
Articles

A grid-based collaborative virtual geographic environment for the planning of silt dam systems

, , , &
Pages 607-621 | Received 19 Feb 2009, Accepted 30 Apr 2009, Published online: 16 Mar 2010
 

Abstract

To improve the efficiency of planning and designing silt dam systems, this article employs theories and technologies of collaboration and distributed virtual geographic environments (VGEs) to construct a collaborative virtual geographic environment (CVGE) system. The CVGE system provides geographically distributed users with a shared virtual space and a collaborative platform to implement collaborative planning. Many difficulties have been found in integrating data resources and model procedures for the planning of silt dam systems because of their diversity in heterogeneous environments. Unlike most of the current distributed system applications, the proposed CVGE system not only supports multi-platform and multi-program-language interoperability in the dynamically changing network environment, but also shares programs, data and software in the collaborative environment. Based on creating a shared 3D space by virtual reality technology, agent and grid technologies were tightly coupled to develop the CVGE system. A grid-based multi-agent system service framework was designed to implement this new paradigm for the CVGE system, which efficiently integrates and shares geographically distributed resources as well as having the ability to build modelling procedures on different platforms. At the same time, mobile agent computing services were implemented to reduce the network load, process parallel tasks, enhance communication efficiency and adapt dynamically to the changing network environment. Using Java, JMF (Java Media Framework API), Globus Toolkits (GT) core, Voyager, C++, and the OpenGL development package, a prototype system was developed to support silt dam systems planning in the case study area, the Jiu-Yuan-Gou watershed of the Loess Plateau, China. Compared with the traditional workflow, the CVGE system can reduce the workload by between one third and a half.

Acknowledgements

This research is supported by CUHK RGC Project No. 447807, the National High Technology Plan (863) of the People's Republic of China, Project No. 2006AA12Z204, and Project No. 2009AA12Z207. The authors thank three anonymous reviewers and editors whose comments have notably improved the manuscript. Finally, the authors are particularly grateful to Dr. Huang Bo for his valuable and helpful comments on the original manuscript.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.