21
Views
3
CrossRef citations to date
0
Altmetric
Original Paper

Biochemical characterization of terbinafine-resistant Trichophytonrubrum isolates

, &
Pages 525-529 | Received 08 Sep 2003, Accepted 16 Dec 2003, Published online: 09 Jul 2009
 

Abstract

We investigated the biochemical basis for resistance in six sequential clinical isolates of Trichophyton rubrum, from the same patient, which exhibited high-level primary resistance to terbinafine. Cellular ergosterol biosynthesis was measured by incorporation of [14C]acetate, and microsomal squalene epoxidase was assayed by conversion of [3H]squalene to squalene epoxide and lanosterol. Direct comparison was made with a terbinafine-susceptible reference strain of T. rubrum in which squalene epoxidase was previously studied. Resistant isolates displayed normal cellular ergosterol biosynthesis, although slight accumulation of radiolabeled squalene suggested reduced squalene epoxidase activity. Ergosterol biosynthesis in the resistant isolates was only inhibited by terbinafine concentrations above 1 μg/ml (IC50 5 μg/ml). In the reference strain, ergosterol biosynthesis was eliminated by terbinafine at 0.03 μg/ml in accordance with historical data. There was no significant difference in sensitivity between the six resistant isolates. Squalene epoxidase from resistant strains was three orders of magnitude less sensitive than normal enzyme to terbinafine (IC50 of 30 μmol/l and 19 n mol/l respectively). The epoxidase in the resistant strains was also unresponsive to tolnaftate. Resistance to terbinafine in these T. rubrum isolates appears to be due to alterations in the squalene epoxidase gene or a factor essential for its activity.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.