240
Views
26
CrossRef citations to date
0
Altmetric
Original Articles

Partial agenesis of the corpus callosum in spina bifida meningomyelocele and potential compensatory mechanisms

, , , &
Pages 180-194 | Published online: 22 Jan 2009
 

Abstract

After a review of Arthur Benton's conceptual and methodological contributions to the understanding of normal and pathological development, we discuss agenesis of the corpus callosum (CC), criteria for potential neuroanatomical compensatory mechanisms in CC agenesis, and the results of an examination of magnetic resonance imaging (MRI) data of the CC in 193 children with spina bifida meningomyelocele (SBM). There were 26 CC regional patterns. Although complete agenesis did not occur, partial agenesis was observed in 102 children and within 15 CC regional patterns. Only 4.1% had a normal CC. Quantitative assessment of the area of the CC in 26 NC children and 68 children with SBM revealed that all subgroups with CC anomalies had smaller areas than did a subgroup with a normal CC. Areas were especially small in rostral/splenial agenesis and splenial agenesis but larger with rostral agenesis. Subgroups with normal/hypoplastic regions or complete hypoplasia also had CC areas that were smaller than normal but larger than the areas for the splenial agenesis groups. The relative rarity of anterior commissure enlargement (3.1%) and longitudinal bundles of Probst (0.1%) suggest that these particular fiber tract anomalies are unlikely candidates for structural compensatory mechanisms. The hippocampal commissure, enlarged in 13%, may be a more promising candidate. Overall, however, the functionality of anomalous fiber tracts and commissures in SBM is yet to be determined.

This research was funded by National Institutes of Child Health and Human Development Grant PO1 HD35946, “Spina Bifida: Cognitive and Neurobehavioral Variability.” We would also like to acknowledge the work of Amy Hampson and Andrea Martin with data collection, and Irene Townsend and Sue Inwood with recruitment.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.