Publication Cover
Archives of Physiology and Biochemistry
The Journal of Metabolic Diseases
Volume 114, 2008 - Issue 5
98
Views
23
CrossRef citations to date
0
Altmetric
Original Article

Roles of insulin signalling and p38 MAPK in the activation by lithium of glucose transport in insulin-resistant rat skeletal muscle

, , &
Pages 331-339 | Received 18 Apr 2008, Accepted 07 Aug 2008, Published online: 05 Jan 2009
 

Abstract

We have demonstrated previously in insulin-sensitive skeletal muscle that lithium, an alkali metal and non-selective inhibitor of glycogen synthase kinase-3 (GSK-3), activates glucose transport by engaging the stress-activated p38 mitogen-activated protein kinase (p38 MAPK). However, it is presently unknown whether this same mechanism underlies lithium action on the glucose transport system in insulin-resistant skeletal muscle. We therefore assessed the effects of lithium on basal and insulin-stimulated glucose transport, glycogen synthesis, insulin signalling (insulin receptor (IR), Akt, and GSK-3), and p38 MAPK in soleus muscle from female obese Zucker rats. Lithium (10 mM LiCl) increased basal glucose transport by 49% (p < 0.05) and net glycogen synthesis by 2.4-fold (p < 0.05). In the absence of insulin, lithium did not induce IR tyrosine phosphorylation, but did enhance (p < 0.05) Akt ser473 phosphorylation (40%) and GSK-3ß ser9 phosphorylation (88%). Lithium potentiated (p < 0.05) the stimulatory effects of insulin on glucose transport (74%), glycogen synthesis (2.4-fold), Akt ser473 phosphorylation (39%), and GSK-3ß ser9 phosphorylation (36%), and elicited robust increases (p < 0.05) in p38 MAPK phosphorylation both in the absence (100%) or presence (88%) of insulin. The selective p38 MAPK inhibitor A304000 (10 μM) completely blocked basal activation of glucose transport by lithium, and significantly reduced (42%, p < 0.05) the lithium-induced enhancement of insulin-stimulated glucose transport in insulin-resistant muscle. These results indicate that lithium enhances both basal and insulin-stimulated glucose transport and glycogen synthesis in insulin-resistant skeletal muscle of female obese Zucker rats, and that these lithium-dependent effects are associated with enhanced Akt and GSK-3ß serine phosphorylation. As in insulin-sensitive muscle, the lithium-induced activation of glucose transport in insulin-resistant skeletal muscle is dependent on the engagement of p38 MAPK.

Acknowledgements

The study was supported by NIH grant DK063967 (to E.J.H.).

Declaration of interest: The authors report no conflicts of interest. The authors alone are responsible for the content and writing of the paper.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.