Publication Cover
Mathematical and Computer Modelling of Dynamical Systems
Methods, Tools and Applications in Engineering and Related Sciences
Volume 11, 2005 - Issue 3
305
Views
51
CrossRef citations to date
0
Altmetric
Original Articles

Thermomechanical modelling, nonlinear dynamics and chaos in shape memory oscillators

&
Pages 291-314 | Published online: 16 Feb 2007
 

Abstract

A constitutive model for the restoring force in pseudo-elastic shape memory oscillators is proposed. The model is developed in a thermomechanical framework and allows one to predict the temperature variations that typically arise in shape memory materials under dynamical loading. A peculiar feature of the model is that all the constitutive equations follow from two basic ingredients, the free energy and the dissipation functions, through the restrictions imposed by the balance equations, instead of being directly postulated as in standard internal variable formulations. The model is then implemented and employed to systematically characterize the nonlinear dynamic response of the oscillator. It turns out that non-regular responses occur around the jumps between different branches of frequency - response curves. The features of the response and the modalities of transition to chaos are described mainly by means of bifurcation diagrams. The effect of the main model parameters (pseudo-elastic loop shape and thermal effects) on the dynamics of the system is also investigated.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.