1,134
Views
76
CrossRef citations to date
0
Altmetric
Original Articles

Application of POD and DEIM on dimension reduction of non-linear miscible viscous fingering in porous media

&
Pages 337-353 | Received 06 Jan 2010, Accepted 19 Jul 2010, Published online: 28 Jul 2011
 

Abstract

A discrete empirical interpolation method (DEIM) is applied in conjunction with proper orthogonal decomposition (POD) to construct a non-linear reduced-order model of a finite difference discretized system used in the simulation of non-linear miscible viscous fingering in a 2-D porous medium. POD is first applied to extract a low-dimensional basis that optimally captures the dominant characteristics of the system trajectory. This basis is then used in a Galerkin projection scheme to construct a reduced-order system. DEIM is then applied to greatly improve the efficiency in computing the projected non-linear terms in the POD reduced system. DEIM achieves a complexity reduction of the non-linearities, which is proportional to the number of reduced variables, whereas POD retains a complexity proportional to the original number of variables. Numerical results demonstrate that the dynamics of the viscous fingering in the full-order system of dimension 15,000 can be captured accurately by the POD–DEIM reduced system of dimension 40 with the computational time reduced by factor of .

Acknowledgements

We thank Prof. Beatrice Riviere for suggesting this miscible flow problem, and for giving helpful advice and comments throughout the course of this work. This work was supported in part by AFOSR grant FA9550-09-1-0225 and by NSF grant DMS-0914021.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.