439
Views
6
CrossRef citations to date
0
Altmetric
Original Articles

Self-organized pattern formation in a swarm system as a transient phenomenon of non-linear dynamics

, &
Pages 39-50 | Received 28 Apr 2011, Accepted 01 May 2011, Published online: 01 Aug 2011
 

Abstract

This article presents a microscopic model (agent positions, directions and interactions are explicitly modelled) of mobile agents (or self-propelled particles) that is inspired by the ‘complex transport networks’ reported by Jones (Citation2010; The emergence and dynamical evolution of complex transport networks from simple low-level behaviours, International Journal of Unconventional Computing 6, pp. 125–144). Here, the agents' positions are modelled continuously. This multi-agent system (or artificial swarm) shows a wide variety of self-organized pattern formations. The self-organization is based on the non-linearity of the agents' turns (discrete jumps in the agents' directions) and the indirect interactions of the agents via a potential field that determines their motion (high values are attractive) and which is changed by themselves (agents increase the value of the potential field at their positions). At least most of the irregular and complex patterns are transient. The patterns found during the transient are more complex than those the system converges to. Still, this transient behaviour is relevant. We empirically investigate the transient times in dependence of several system parameters and give examples.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.