504
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Inhibitory Effects of Lycopene on the Induction of NO, Cytokines, and Mitogen-Activated Protein Kinase Expression by Lipopolysaccharide in Primary Cultured Microglia

, , , , , , & show all
Pages 579-586 | Accepted 25 Jan 2008, Published online: 20 Oct 2008
 

Abstract

Microglia are activated in response to brain injury and release neurotoxic factors including nitric oxide (NO) and proinflammatory cytokines such as tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β). Lycopene, a potent antioxidant, is known to inhibit brain injury. In this study, we found that lycopene (5–20 μ M) significantly inhibited lipopolysaccharide (LPS)-induced NO release in primary cultured microglia. Lycopene (5–20 μM) also concentration-dependently diminished the LPS-induced production of proinflammatory cytokines such as TNF-α and IL-1β in microglia. Further study of the molecular mechanisms revealed that lycopene markedly inhibited extracellular signal-regulated kinase (ERK1/2) but not c-Jun N-terminal kinase (JNK1/2) or p38 mitogen-activated protein kinase (MAPK) phosphorylation stimulated by LPS in microglia. These results suggest that microglial inactivation by lycopene is at least partially due to activation of ERK1/2 phosphorylation Therefore, inhibition of NO and proinflammatory cytokine production in activated microglia by lycopene may represent a powerful and potential therapeutic strategy for various neurodegenerative diseases including ischemia-reperfusion cerebral infarction.

Acknowledgments

This work was supported by grants from the National Science Council of Taiwan (94-2321-B-038-001), Shin Kong Wu Ho-Su Memorial Hospital (SKH-TMU-92-27), and Min-Sheng Healthcare (93MSH-TMU-10), and by a Topnotch Stroke Research Center Grant, Ministry of Education, Taiwan.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.