199
Views
10
CrossRef citations to date
0
Altmetric
Original Articles

Development of a dust collector inlet hood for enhanced surface mine drill dust capture

Pages 12-28 | Published online: 04 Aug 2006
 

Abstract

Surface mine drill operators have the highest frequency of overexposure to quartz dust, and drilling is one of the occupations associated with the highest incidence of silicosis. Previous field assessment studies of drilling machines indicate that they can emit some of the highest airborne respirable quartz dust concentrations found at surface mining operations. Typically, the surface mine drills are equipped with dry dust collector systems to capture the dust being flushed with compressed air from the hole during the drilling process. The overall control effectiveness of the dust collector system is initially dependent on capturing the dust cloud at the source via the collector inlet. To assist the initial capture of the dust being flushed from the drill hole, the bottom of the drill deck is typically shrouded or enclosed on all sides to help contain the dust for the collector inlet plenum located on the underside perimeter of the drill deck. Openings, gaps and breaches in the shroud enclosure permit dust to escape dust collector capture.

1 Mention of any company name or product does not constitute endorsement by the National Institute for Occupational Safety and Health.

The National Institute for Occupational Safety and Health (NIOSH) has developed a collector inlet hood that reconfigures the inlet plenum around the drill steel and above the hole to enhance dust capture. Laboratory development and testing show that this inlet hood improves dust capture by an average of nearly 50% over a wide range of collector flows and shroud leakage areas. This report describes the laboratory and subsequent field testing of this inlet hood concept.

Notes

1 Mention of any company name or product does not constitute endorsement by the National Institute for Occupational Safety and Health.

2None of these respirable gravimetric dust concentrations has been adjusted to a MRE equivalent.

3None of these respirable gravimetric dust concentrations have been adjusted to a MRE equivalent.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.