704
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

A speckle-tracking strain-based artificial neural network model to differentiate cardiomyopathy type

, , , ORCID Icon, , , & show all
Pages 92-99 | Received 03 Feb 2019, Accepted 04 Oct 2019, Published online: 18 Oct 2019
 

Abstract

Objectives. In heart failure, invasive angiography is often employed to differentiate ischaemic from non-ischaemic cardiomyopathy. We aim to examine the predictive value of echocardiographic strain features alone and in combination with other features to differentiate ischaemic from non-ischaemic cardiomyopathy, using artificial neural network (ANN) and logistic regression modelling. Design. We retrospectively identified 204 consecutive patients with an ejection fraction <50% and a diagnostic angiogram. Patients were categorized as either ischaemic (n = 146) or non-ischaemic cardiomyopathy (n = 58). For each patient, left ventricular strain parameters were obtained. Additionally, regional wall motion abnormality, 13 electrocardiographic (ECG) features and six demographic features were retrieved for analysis. The entire cohort was randomly divided into a derivation and a validation cohort. Using the parameters retrieved, logistic regression and ANN models were developed in the derivation cohort to differentiate ischaemic from non-ischaemic cardiomyopathy, the models were then tested in the validation cohort. Results. A final strain-based ANN model, full feature ANN model and full feature logistic regression model were developed and validated, F1 scores were 0.82, 0.79 and 0.63, respectively. Conclusions. Both ANN models were more accurate at predicting cardiomyopathy type than the logistic regression model. The strain-based ANN model should be validated in other cohorts. This model or similar models could be used to aid the diagnosis of underlying heart failure aetiology in the form of the online calculator (https://cimti.usj.edu.lb/strain/index.html) or built into echocardiogram software.

Disclosure statement

The authors declare no conflict of interest.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.