152
Views
10
CrossRef citations to date
0
Altmetric
Technical Paper

Modelling of machining force in end milling of GFRP composites using MRA and ANN

, &
Pages 104-114 | Received 02 May 2014, Accepted 07 Sep 2014, Published online: 26 Nov 2015
 

Abstract

Glass Fibre Reinforced Plastic (GFRP) composites show a tremendous increase in applications due to their superior properties. Some damages on the surface occur due to their complex cutting mechanics in cutting process. Minimization of the machining force is fairly important in terms of product quality. In this study, a GFRP composite material with 15°, 60° and 105° were milled to experimentally minimize the cutting forces on the machined surfaces, using solid carbide end mills with 25°, 35° and 45° helix angles at different combinations of cutting parameters. Experimental results showed that the machining force increased with increasing fibre orientation and feed rate; on the other hand, it was found that the machining force decreased with increasing cutting speed and helix angle of the end mill cutter. In addition, analysis of variance (ANOVA) results clearly revealed that the helix angle of the end mill cutter was the most influential parameter affecting the machining force in end milling of GFRP composites. A model based on an artificial neural network (ANN) is introduced to predict the machining force of GFRP with three different fibre orientations. This model is a feed forward back propagation neural network with a set of machining parameters as its inputs and the machining force as its output. Levenberg–Marquardt learning algorithm was used in predicting the machining force to reduce the number of expensive and time-consuming experiments. The highest performance was obtained by 4-18-18-1 network structure. ANN was notably successful in predicting the damage factor due to higher R2 and lower RMSE and MEP.

Disclosure statement

No potential conflict of interest was reported by the authors.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.