150
Views
7
CrossRef citations to date
0
Altmetric
Research Article

Innovations in Eyring–Powell radiative nanofluid flow due to nonlinear stretching sheet with convective heat and mass conditions: Numerical study

&
Pages 221-233 | Received 16 Mar 2020, Accepted 21 Oct 2020, Published online: 10 Dec 2020
 

ABSTRACT

The augmentation of heat and mass transfer in an industrial process due to convective boundary conditions plays an important role which cannot be ignored and the study lead to saving energy, reducing process time and increasing thermal rating. The impact of nonlinear thermal radiation on Eyring-Powell nanofluid flow over a nonlinear elongating sheet with Joule and viscous dissipation is investigated. The well-posed boundary layer problem is reduced into a highly nonlinear coupled ordinary differential system by adopting similarity transformations. The resultant equations subject to convective temperature and concentration conditions are then solved by employing a Runge-Kutta-Fehlberg 45 order numerical scheme combined with shooting technique. The flow characteristics affected by the pertinent parameters are calculated and presented through the graphs. It is witnessed that the increase in mass Biot number and Lewis number aggregates to rise in the Sherwood number. Also, the rate of heat transfer coefficient rises with growing values of thermal Biot number and radiation parameter. These investigations are of great importance in food processing, crystal growth, fibre and wire coating, production of glass fibres and in many possible areas.

Nomenclature

Acknowledgments

The authors are grateful to the reviewers for their suggestions that extensively improved our paper.

Disclosure statement

No potential conflict of interest was reported by the authors.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.