51
Views
9
CrossRef citations to date
0
Altmetric
Original Articles

Relationship between sediment phosphorus release rates and characteristics of the benthic microbial community in a hypereutrophic marsh

, &
Pages 31-41 | Published online: 16 Aug 2010
 

Abstract

Cootes Paradise Marsh is a hypereutrophic coastal wetland of Lake Ontario that has received sewage from the town of Dundas, Ontario for over eight decades. As such, sediments are nutrient rich and phosphorus release from the sediments is substantial. Release rates of soluble reactive phosphorus from frozen sediments collected at eleven representative sites in the marsh were highly variable, ranging from 0.96 to 28.28 mg m2 d−1. We wanted to evaluate spatial variance of the benthic microbial community and determine if this variation could be correlated to phosphorus release rates from corresponding sediments. Fresh sediment samples were collected from the same sites and characterized on the basis of sole-carbon-source utilization patterns through a Principal Components Analysis. Microbial communities located closest to the sewage outfall, had a high affinity for phosphorylated substrates, and used mainly carbohydrates, and were separated from communities located distal to the sewage source, which readily used polymers and simple sugars. Subsequently, sediment samples were collected from two sources and kept frozen for later phosphorus-release experiments while comparable samples were also collected to characterize the benthic microbial community from these sites. Phosphorus-release rates and utilization of specific substrates for the frozen sediment samples were significantly correlated (Spearman's Rank Correlation Analysis; P = 0.041), indicating a direct link between release and patterns of carbon utilization. Microbial communities of freshly collected sediments differed significantly from those of frozen sediments, and these differences were also observed for corresponding phosphorus-release rates. We conclude that the microbial community structure likely plays a major and direct role in the release and uptake of phosphorus from the sediment in Cootes Paradise Marsh.

Acknowledgements

Financial support for this project was provided through a research grant to PC-F from the Regional Municipality of Hamilton-Wentworth, and an NSERC operating grant. We owe a great deal of thanks to the field and laboratory technicians who assisted with sample collection and analysis. In particular, we would like to extend our gratitude to Chung Dao for his work in 2001 and 2002.

Notes

∗Depth and TP values averaged from 1993–2000; all other station correspond to 1999 values only (Chow-Fraser, unpubl. data); NA = not available.

∗Regression coefficient.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.