45
Views
0
CrossRef citations to date
0
Altmetric
Articles

Technical note: Using Johnson distributions to model trunk kinematics

ORCID Icon, &
Pages 555-566 | Received 06 Apr 2020, Accepted 09 Oct 2020, Published online: 23 Oct 2020
 

Abstract

As we seek to develop high fidelity human simulation models for ergonomic applications, the characterisation of the variability in human performance is needed. This technical note describes a method for generating probability density functions (PDFs) for one performance characteristic: trunk kinematics. A PDF from the Johnson family of distributions is defined by four parameters (γ, ξ, δ and λ) and can represent a variety of distributions. In this study, previously published trunk kinematic data were fit to Johnson distributions and regression equations for each of the four parameters were created as a function of starting lift height. Using regression coefficients and Monte Carlo simulation, PDFs for novel lifting conditions were generated. These predicted PDFs were compared with histograms of empirical data collected from a new group of ten lifters performing lifts in these novel conditions. A Kolmogorov–Smirnov goodness of fit test was performed to assess the quality of the fit. Seven of the predicted distributions of these kinematic variables were found to be a good fit with the novel empirical data.

Disclosure statement

The authors have no conflicts of interest to disclose.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.