Publication Cover
Human Fertility
an international, multidisciplinary journal dedicated to furthering research and promoting good practice
Volume 26, 2023 - Issue 5
222
Views
1
CrossRef citations to date
0
Altmetric
Review Articles

The role of CFTR channel in female infertility

Pages 1228-1237 | Received 20 Jun 2021, Accepted 06 Mar 2022, Published online: 28 Dec 2022
 

Abstract

The cystic fibrosis transmembrane conductance regulator (CFTR) is a cAMP-activated trans-membrane ATP gated anion channel present in most epithelia, which transports chloride and bicarbonate ions across the apical membrane. Mutations in the CFTR protein are known to result in defective expression or function, notably the inhibition of chloride and bicarbonate transport. This can result in cystic fibrosis (CF), a disorder characterised by thickness of the mucus lining of the epithelial cells of the alimentary and respiratory tracts, sweat ducts and reproductive organs. As a consequence, there is a reduction in fluid transport at the apical surface. While the most devastating effect of CF is mortality, about 98% of men with CF are infertile, consequent of early blockage of or failure to develop the mesonephrotic ducts as well as the vas deferens. The effect of CF of female fertility is less well-understood. This review highlights the genetics and pathophysiology as well as the mechanism of action of CF on female infertility.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.