26
Views
2
CrossRef citations to date
0
Altmetric
Original

bFGF influences human articular chondrocyte differentiation

, MD, , , , , , & show all
Pages 184-193 | Published online: 07 Jul 2009
 

Abstract

Background

The possible functional role of basic fibroblast growth factor (bFGF) in regulating the mitotic and metabolic activity of primary human articular chondrocytes was investigated.

Methods

[EF1]Chondrocytes were enzymatically isolated from femoral head cartilage, and were cultured in vitro in monolayer. bFGF-dependent cell proliferation, production of collagen type II and aggrecan were monitored 10 days after isolation. Furthermore, effect of bFGF on cell cycle, cell morphology, and mRNA expression of integrins and chondrogenic markers determined by real time PCR were analyzed.

Results

bFGF concentrations in supernatants of primary human articular chondrocytes peaked immediately after isolation and then declined. In a dose-dependent manner, bFGF enhanced cell amplification and viability. BFGF induced a decrease in the apoptotic cell population, while the number of proliferating cells remained unchanged. Supplementation of cell culture with bFGF reduced collagen type II mRNA by 49%, but increased expression of the integrin α2 by 70%. bFGF did not significantly regulate the integrins α1, α5, α10, αv and type I collagen. bFGF reduced the amount of collagen type II by 53%, which was correlated with diminished mRNA production. Monolayer cultured chondrocytes secreted significant amounts of aggrecan that decreased over time. Secretion of this cartilage-specific marker was further reduced by the addition of bFGF.

DiscussionThese findings highlight the potential role of bFGF as an endogenous chondrocyte mediator that can enhance cell amplification and regulate cell differentiation.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.