892
Views
74
CrossRef citations to date
0
Altmetric
Original scientific papers

Assessing asphalt mixture moisture susceptibility through intrinsic adhesion, bitumen stripping and mechanical damage

, , , , &
Pages 131-152 | Received 07 Jun 2013, Accepted 01 Nov 2013, Published online: 09 Dec 2013
 

Abstract

Durability is one of the most important properties of an asphalt mixture. A key factor affecting the durability of asphalt pavements is moisture damage. Moisture damage is generally considered to be the result of two main mechanisms; the loss of adhesion between bitumen and the aggregate and the loss of cohesion within the mixture. Conventional test methods for evaluating moisture damage include tests conducted on loose bitumen-coated aggregates and those conducted on compacted asphalt mixtures. This paper looks at results from the rolling bottle and the saturated ageing tensile stiffness (SATS) tests in an attempt to better understand the underlying processes and mechanisms of moisture damage with the help of surface energy measurements on the constituent bitumen and aggregates. Combinations of materials were assessed using both the rolling bottle and SATS tests. The surface energy properties of the binders were measured using a dynamic contact angle analyser and those of the aggregates using a dynamic vapour sorption device. From these surface energy measurements, it was possible to predict the relative performance of both the simple rolling bottle test and the more complicated SATS test. Mineralogical composition of the aggregates determined using a mineral liberation analyser was used to explain the differences in performance of the mixtures considered.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.