179
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Lagrangian dynamic SGS model for stochastic coherent adaptive large eddy simulation

, , &
Article: N11 | Published online: 10 Mar 2008
 

Abstract

Stochastic coherent adaptive large eddy simulation (SCALES) is an extension of large eddy simulation that uses a wavelet filter-based dynamic grid adaptation strategy to solve for the most energetic coherent structures in a turbulent flow field, while modeling the effect of the less energetic ones. A localized dynamic subgrid scale model is needed to fully exploit the ability of the method to track coherent structures. In this paper, new local Lagrangian models based on a modified Germano dynamic procedure, redefined in terms of wavelet thresholding filters, are proposed. These models extend the original path-line formulation of Meneveau et al. [J. Fluid Mech. 319 (1996)] in two ways: as Lagrangian path-line diffusive and Lagrangian path-tube averaging procedures. The proposed models are tested for freely decaying homogeneous turbulence with initial Re λ = 72. It is shown that the SCALES results, obtained with less than 0.4% of the total non-adaptive nodes required for a DNS with the same wavelet solver, closely match reference DNS data. In contrast to classical LES, this agreement holds not only for large scale global statistical quantities, but also for energy and, more importantly, enstrophy spectra up to the dissipative wavenumber range.

Notes

1 N is also the number of grid points due to one-to-one correspondence between wavelet locations and grid points.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.