389
Views
31
CrossRef citations to date
0
Altmetric
Original Articles

Effect of compressibility on turbulent velocity gradients and small-scale structure

, &
Article: N9 | Received 17 May 2008, Accepted 14 Jan 2009, Published online: 14 Apr 2009
 

Abstract

The effect of compressibility on turbulent velocity gradients is studied by performing direct numerical simulations of decaying compressible turbulence at various turbulent Mach (0.059–0.885) and Reynolds (55, 110) numbers. When examined as a function of turbulent Mach number, compressibility effects on velocity gradients are masked by dominant solenoidal fluctuations. To isolate the compressibility effects, we investigate velocity-gradient behavior conditioned on the local dilatation level. The main conclusions valid for the parameter range of the study are as follows (1) kinetic energy and dissipation rate depend weakly on the turbulent Mach number, but strongly on the Reynolds number. (2) The dilatation level increases progressively with turbulent Mach number but still constitutes only a small fraction of total fluctuations in all cases considered. (3) Intermittency increases with turbulent Mach number. (4) Strain-rate eigenvalue distribution depends strongly on dilatation level. It is found that at extreme dilatation levels, the flow field may experience isotropic expansion or isotropic compression. (5) The preferential alignment between vorticity and strain-rate eigenvectors weakens in strong dilatation region as vorticity itself starts to vanish. It must be emphasized that these observations are valid only for the range of Reynolds and Mach numbers considered in the study.

Acknowledgement

This work was supported by AFOSR (MURI) Grant No. FA9550-04-1-0425 (Program Manager: Dr. John Schmisseur).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.