548
Views
24
CrossRef citations to date
0
Altmetric
Original Articles

Effects of modelling, resolution and anisotropy of subgrid-scales on large eddy simulations of channel flow

, , , &
Article: N10 | Received 23 Jul 2010, Accepted 10 Nov 2010, Published online: 23 Feb 2011
 

Abstract

In this paper, the effect of subgrid-scale (SGS) modelling, grid resolution and anisotropy of the subgrid-scales on large eddy simulation (LES) is investigated. LES of turbulent channel flow is performed at Re τ=934, based on friction velocity and channel half width, for a wide range of resolutions. The dynamic Smagorinsky model (DS), the high-pass filtered dynamic Smagorinsky model (HPF) based on the variational multiscale method and the recent explicit algebraic model (EA), which accounts for the anisotropy of the SGS stresses are considered.

The first part of the paper is focused on the resolution effects on LES, where the performances of the three SGS models at different resolutions are compared to direct numerical simulation (DNS) results. The results show that LES using eddy viscosity SGS models is very sensitive to resolution. At coarse resolutions, LES with the DS and the HPF models deviate considerably from DNS, whereas LES with the EA model still gives reasonable results. Further analysis shows that the two former models do not accurately predict the SGS dissipation near the wall, while the latter does, even at coarse resolutions. In the second part, the effect of SGS modelling on LES predictions of near-wall and outer-layer turbulent structures is discussed. It is found that different models predict near-wall turbulent structures of different sizes. Analysis of the spectra shows that although near-wall scales are not resolved at coarse resolutions, large-scale motions can be reasonably captured in LES using all the tested models.

Acknowledgements

Support from the Swedish research council through grant numbers 621-2010-6965 and 621-2007-4232 and computer time provided by the Swedish National Infrastructure for Computing (SNIC) are gratefully acknowledged. The authors would also like to thank Prof. Javier Jiménez for providing DNS data at Re τ=934.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.