306
Views
10
CrossRef citations to date
0
Altmetric
Original Articles

Flame and eddy structures in hydrogen–air turbulent jet premixed flame

, , , , , & show all
Article: N42 | Received 12 Dec 2011, Accepted 06 Aug 2012, Published online: 11 Sep 2012
 

Abstract

Three-dimensional direct numerical simulation (DNS) of hydrogen–air turbulent plane jet premixed flames, which are composed of jet with unburnt mixture gas and surrounding burnt gas for flame holding, has been conducted for two cases of mean streamwise velocity of the jet, 100 m/s and 350 m/s. Fully-developed homogeneous isotropic turbulence is superimposed on the mean flow. A detailed kinetic mechanism including 12 reactive species and 27 elementary reactions is considered. Eddy structures which have large-scale in space are produced for both cases, whereas the mechanism of the eddy formation depends on the inlet velocity. Although combustion condition of the present DNS with inlet velocity 100 m/s is classified into corrugated flamelets regime, unburnt mixture islands frequently appear behind the main flame body. The creation of these islands is closely related to the fine-scale eddies in the unburnt gas and the separated unburnt mixture contributes to increase of heat release rate and turbulent burning velocity. Effects of shear and turbulent intensity on characteristics of heat release rate and tangential strain rate of the jet flames are investigated statistically.

Acknowledgments

This work is partially supported by the Cabinet Office, Government of Japan through its “Funding Program for Next Generation World-Leading Researchers”.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.